Refactoring machine learning code - einops

Einops is a really great library to improve your machine learning code. It supports Numpy, PyTorch, Tensorflow and many more machine learning libraries. It helps to give more semantic meaning to your code and can also save you a lot of headaches when transforming data. As a primer let’s look at a typical use-case in machine learning where you have a bunch of data and you want to reshape it, so some dimensions are merged together like this:
Read more →

Refactoring machine learning code - comments as code

I find that in the field of data science and machine learning some coding principles that are standard in traditional software engineering sometimes are lacking. One such principle is to strive to rather specify everything that is possible in code rather than as comments. Why does it make sense to do that? Comments often don’t age well. You write them in the context of the current code, but then over time as the code gets changed and readapted to other use cases, the context changes.
Read more →
Follow me on twitter!