Hyperparameter tuning on numerai data with PyTorch Lightning and weights & biases

To compare the previously described approach of hyperparameter tuning using fastai and wandb, today we’ll see how to tackle the same approach, but using PyTorch Lightning instead of fastai. The goal is to have an automated hyperparameter tuning pipeline running on the Numerai data set. What is Numerai? Numerai is a hedge fund which trades stocks in a market neutral fashion. That means that they try to make money without having a lot of risk for their customers.
Read more →

Hyperparameter tuning on numerai data with fastai and weights & biases

Today we will try to tackle the Numerai tournament using the fastai deep learning library. However, as the results likely depend on many different hyperparameters, let’s take advantage of the weights and biases library and their sweeps API. Sweeps are hyperparameter runs which test out different combinations of your model’s hyperparameters. What is Numerai? Numerai is a hedge fund which trades stocks in a market neutral fashion. That means that they try to make money without having a lot of risk for their customers.
Read more →

P-Diff Learning Classifier with noisy labels based on probability difference distributions

Label noise in digital Pathology In the field of digital pathology and other health related deep learning applications, label noise is an important challenge to consider during training. It’s inherent to the medical fields as the problems are extremely challenging even for trained experts, so there is high intra- as well as inter-observer variability. This blog post dives into the idea of the paper P-DIFF: Learning Classifier with Noisy Labels based on Probability Difference Distributions which is authored by researchers of Microsoft in China.
Read more →

Meta-learning from noisy labels

Label noise introduction Training machine learning models requires a lot of data. Often, it is quite costly to obtain sufficient data for your problem. Sometimes, you might even need domain experts which don’t have much time and are expensive. One option that you can look into is getting cheaper, lower quality data, i.e. have less experienced people annotate data. This usually has the side effect of your labels becoming more noisy.
Read more →

Depthwise Separable Convolutions in PyTorch

In many neural network architectures like MobileNets, depthwise separable convolutions are used instead of regular convolutions. They have been shown to yield similar performance while being much more efficient in terms of using much less parameters and less floating point operations (FLOPs). Today, we will take a look at the difference of depthwise separable convolutions to standard convolutions and will analyze where the efficiency comes from. Short recap: standard convolution In standard convolutions, we are analyzing an input map of height H and width W comprised of C channels.
Read more →
Follow me on twitter!